_/**
* original: Author : Stefan Gustavson (stefan.gustavson@liu.se)<br>
* https://github.com/ashima/webgl-noise/blob/master/src/cellular2D.glsl<br>
*<br>
* These are wgsl functions, not js functions.
* The function is enclosed in a js string constant,
* to be appended into the code to reference it in the string shader.
* @module points/cellular2d
*/
/**
* Cellular noise
* @type {String}
* @param {vec2f} P position
* @returns {vec2f} noise in the specified position
*
* @example
* // js
* import { cellular } from 'points/cellular2d';
*
* // wgsl string
* ${cellular}
* let value = cellular(uvr);
*
*/
export const cellular = /*wgsl*/`
// Modulo 289 without a division (only multiplications)
fn mod289_v3(x:vec3<f32>) -> vec3<f32> {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
fn mod289(x: vec2<f32>) -> vec2<f32> {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
// Modulo 7 without a division
fn mod7(x:vec3<f32>) -> vec3<f32> {
return x - floor(x * (1.0 / 7.0)) * 7.0;
}
// Permutation polynomial: (34x^2 + 6x) mod 289
fn permute(x: vec3<f32>) -> vec3<f32> {
return mod289_v3((34.0 * x + 10.0) * x);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Standard 3x3 search window for good F1 and F2 values
const K = 0.142857142857; // 1/7
const Ko = 0.428571428571; // 3/7
const jitter = 1.0; // Less gives more regular pattern
fn cellular(P:vec2<f32>) -> vec2<f32> {
let Pi:vec2<f32> = mod289(floor(P));
let Pf:vec2<f32> = fract(P);
let oi:vec3<f32> = vec3(-1.0, 0.0, 1.0);
let of_:vec3<f32> = vec3(-0.5, 0.5, 1.5);
let px:vec3<f32> = permute(Pi.x + oi);
var p:vec3<f32> = permute(px.x + Pi.y + oi); // p11, p12, p13
var ox:vec3<f32> = fract(p*K) - Ko;
var oy:vec3<f32> = mod7(floor(p*K))*K - Ko;
var dx:vec3<f32> = Pf.x + 0.5 + jitter*ox;
var dy:vec3<f32> = Pf.y - of_ + jitter*oy;
var d1:vec3<f32> = dx * dx + dy * dy; // d11, d12 and d13, squared
p = permute(px.y + Pi.y + oi); // p21, p22, p23
ox = fract(p*K) - Ko;
oy = mod7(floor(p*K))*K - Ko;
dx = Pf.x - 0.5 + jitter*ox;
dy = Pf.y - of_ + jitter*oy;
var d2 = dx * dx + dy * dy; // d21, d22 and d23, squared
p = permute(px.z + Pi.y + oi); // p31, p32, p33
ox = fract(p*K) - Ko;
oy = mod7(floor(p*K))*K - Ko;
dx = Pf.x - 1.5 + jitter*ox;
dy = Pf.y - of_ + jitter*oy;
let d3 = dx * dx + dy * dy; // d31, d32 and d33, squared
// Sort out the two smallest distances (F1, F2)
let d1a = min(d1, d2);
d2 = max(d1, d2); // Swap to keep candidates for F2
d2 = min(d2, d3); // neither F1 nor F2 are now in d3
d1 = min(d1a, d2); // F1 is now in d1
d2 = max(d1a, d2); // Swap to keep candidates for F2
//d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller
if(d1.x < d1.y){
//d1.xy = d1.xy;
}else{
//d1.xy = d1.yx;
d1 = vec3(d1.yx, d1.z);
}
//d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x
if(d1.x < d1.z){
}else{
//d1.xz = d1.zx;
d1 = vec3(d1.z, d1.y, d1.x);
}
//d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz
d1 = vec3(d1.x, min(d1.yz, d2.yz));
d1.y = min(d1.y, d1.z); // nor in d1.z
d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done.
return sqrt(d1.xy);
}
`;